It's almost 5:00 PM on a Friday, which means I'm tired and don't want to do anymore work. While staring blankly at my computer screen for ten minutes waiting for happy hour and the beer that awaits, I reflected upon my day and what I accomplished. During this time of meditation, it struck me that my day, a fairly typical day in my grad student life, might be a bit unusual. Here's my summary:
8:00 AM: Get into office after working out. Check e-mail/Facebook. So far so good.
8:30 AM: Get first cup of coffee.
8:35 AM: Begin 12 page derivation of expression for decorrelation times of a time series of images of microparticles undergoing anisotropic Brownian motion.
9:30 AM: Get second cup of coffee. The caffeine's really producing some crazy math now.
10:10 AM: Finish derivation. Try and place all the scratch paper strewn about the office in order. Fail at this.
10:20 AM: Tweak Matlab code for simulating anisotropic Brownian motion. Become upset when a function I want to use is in the Spline Toolbox. We don't have a license for the Spline Toolbox.
10:30 AM: Get bored of this. Get more coffee.
10:35 AM: Read journal article on causality and the Kramers-Kronig relations. Spend too much time wondering why differential equations with higher order time derivatives of the force on a system than the system response are not causal. (P. Kinsler, "How to be causal," arXiv:1106.1792v1 (2011)
11:45 AM: Eat lunch.
12:15 PM: Check Facebook. Join the collective graduate student world in celebrating the announcement of the PhD movie.
12:30 PM: Build a setup using Ni:Chrome wire, a current regulated supply, and spare lab parts for cutting slots into plastic Petri dishes.
1:00 PM: Cut slots into the sides of the Petri dishes. Try not to breath the fumes from the molten plastic.
2:00 PM: Glue fibers that were previously tapered with a CO2 laser into the slots with a silicone-based glue that is normally used for gluing colostomy bags to people.
2:30 PM: Become dizzy from the plastic/glue fumes. Take a walk outside.
3:00 PM: Go to biology and observe HeLa cells growing in a petri dish on a quartz surface I prepared last week. Take minor awe in noting that this exact cell line can be traced to a woman who died in 1951.
3:15 PM: Debate with a biology professor why structured networks can induce stress in the actin filaments of the cytoskeleton and why ex vivo observations can facilitate in vivo understandings of cell motility.
3:30 PM: Return to office, which now smells like colostomy bag glue.
3:50 PM: Read notes that came with glue. Make note that isopropyl alcohol-the very chemical I use to sterilize dishes-will dissolve the glue and has rendered this work useless. State an expletive rather loudly at this finding.
3:55 PM: Go to lab and play with the alignment of my imaging fiber setup.
4:05 PM: Try and find the other imaging fiber (needed to be prepared by Monday for the biology professor) but realize my groupmate took it and put it in his own setup.
4:10 PM: Attempt to contact groupmate. He left for the day already and is not answering his cell phone. State another expletive at the realization that I will have to come in on the weekend to prepare the fiber.
4:20 PM: Return to lab. Note that the Ti:Sapphire laser head cooling system reports an error due to lack of cooling water. Check water tank. It's full.
4:30 PM: Return to office. Note giant glob of colostomy bag glue on desk. Luckily it's removed with isopropyl alcohol.
4:35 PM: Summarize life.
5:15 PM: Go drink beer.